homebridge-face-location/scripts/train.ts

95 lines
2.7 KiB
TypeScript

import * as faceapi from "@vladmandic/face-api";
import canvas from "canvas";
import fs, { lstatSync } from "fs";
import * as path from "path";
import { TNetInput } from "@vladmandic/face-api";
import * as mime from "mime-types";
import dotenv from "dotenv-extended";
import { getFaceDetectorOptions } from "../src/common";
require("@tensorflow/tfjs-node");
const { Canvas, Image, ImageData } = canvas;
//@ts-ignore
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
const main = async () => {
dotenv.load({
silent: false,
errorOnMissing: true,
});
const inputDir = process.env.REF_IMAGE_DIR as string;
const outDir = process.env.TRAINED_MODEL_DIR as string;
const faceDetectionNet = faceapi.nets.ssdMobilenetv1;
await faceDetectionNet.loadFromDisk(path.join(__dirname, "../weights"));
await faceapi.nets.faceLandmark68Net.loadFromDisk(
path.join(__dirname, "../weights")
);
await faceapi.nets.faceRecognitionNet.loadFromDisk(
path.join(__dirname, "../weights")
);
const options = getFaceDetectorOptions(faceDetectionNet);
const dirs = fs.readdirSync(inputDir);
for (const dir of dirs) {
if (!lstatSync(path.join(inputDir, dir)).isDirectory()) {
continue;
}
const files = fs.readdirSync(path.join(inputDir, dir));
let referenceResults = await Promise.all(
files.map(async (file: string) => {
const mimeType = mime.contentType(
path.extname(path.join(inputDir, dir, file))
);
if (!mimeType || !mimeType.startsWith("image")) {
return;
}
console.log(path.join(inputDir, dir, file));
try {
const referenceImage = (await canvas.loadImage(
path.join(inputDir, dir, file)
)) as unknown;
const descriptor = await faceapi
.detectAllFaces(referenceImage as TNetInput, options)
.withFaceLandmarks()
.withFaceDescriptors();
return descriptor.length > 0 ? descriptor : undefined;
} catch (err) {
console.log(
"An error occurred loading image at path: " +
path.join(inputDir, dir, file)
);
}
return undefined;
})
);
const items = [];
for (const item of referenceResults) {
if (item) {
items.push(...item);
}
}
const faceMatcher = new faceapi.FaceMatcher(items);
fs.writeFile(
path.join(outDir, dir + ".json"),
JSON.stringify(faceMatcher.toJSON()),
"utf8",
(err) => {
if (err) {
console.log(`An error occurred while writing ${dir} model to file`);
}
console.log(`Successfully wrote ${dir} model to file`);
}
);
}
};
main();