import * as faceapi from "@vladmandic/face-api"; import canvas from "canvas"; import fs, { lstatSync } from "fs"; import * as path from "path"; import { LabeledFaceDescriptors, TNetInput } from "@vladmandic/face-api"; import * as mime from "mime-types"; import dotenv from "dotenv-extended"; import { getFaceDetectorOptions } from "../src/common"; require("@tensorflow/tfjs-node"); const { Canvas, Image, ImageData } = canvas; //@ts-ignore faceapi.env.monkeyPatch({ Canvas, Image, ImageData }); const main = async () => { dotenv.load({ silent: false, errorOnMissing: true, }); const inputDir = process.env.REF_IMAGE_DIR as string; const outDir = process.env.TRAINED_MODEL_DIR as string; const faceDetectionNet = faceapi.nets.ssdMobilenetv1; await faceDetectionNet.loadFromDisk(path.join(__dirname, "../weights")); await faceapi.nets.faceLandmark68Net.loadFromDisk( path.join(__dirname, "../weights") ); await faceapi.nets.faceRecognitionNet.loadFromDisk( path.join(__dirname, "../weights") ); const options = getFaceDetectorOptions(faceDetectionNet); const dirs = fs.readdirSync(inputDir); const refs: Array<LabeledFaceDescriptors> = []; for (const dir of dirs) { if (!lstatSync(path.join(inputDir, dir)).isDirectory()) { continue; } const files = fs.readdirSync(path.join(inputDir, dir)); let referenceResults = await Promise.all( files.map(async (file: string) => { const mimeType = mime.contentType( path.extname(path.join(inputDir, dir, file)) ); if (!mimeType || !mimeType.startsWith("image")) { return; } console.log(path.join(inputDir, dir, file)); try { const referenceImage = (await canvas.loadImage( path.join(inputDir, dir, file) )) as unknown; const descriptor = await faceapi .detectSingleFace(referenceImage as TNetInput, options) .withFaceLandmarks() .withFaceDescriptor(); if (!descriptor || !descriptor.descriptor) { throw new Error("No face found"); } const faceDescriptors = [descriptor.descriptor]; return new faceapi.LabeledFaceDescriptors(dir, faceDescriptors); } catch (err) { console.log( "An error occurred loading image at path: " + path.join(inputDir, dir, file) ); } return undefined; }) ); if (referenceResults) { refs.push( ...(referenceResults.filter((e) => e) as LabeledFaceDescriptors[]) ); } } const faceMatcher = new faceapi.FaceMatcher(refs); fs.writeFile( path.join(outDir, "data.json"), JSON.stringify(faceMatcher.toJSON()), "utf8", (err) => { if (err) { console.log(`An error occurred while writing data model to file`); } console.log(`Successfully wrote data model to file`); } ); }; main();