Compare commits
2 Commits
3d73ddf4d5
...
cf2c20b6e0
Author | SHA1 | Date | |
---|---|---|---|
|
cf2c20b6e0 | ||
|
0cb3862843 |
@ -1,100 +1,16 @@
|
||||
import * as faceapi from "@vladmandic/face-api";
|
||||
import canvas from "canvas";
|
||||
import fs, { lstatSync } from "fs";
|
||||
import * as path from "path";
|
||||
import { LabeledFaceDescriptors, TNetInput } from "@vladmandic/face-api";
|
||||
import * as mime from "mime-types";
|
||||
import dotenv from "dotenv-extended";
|
||||
import { getFaceDetectorOptions } from "../src/common";
|
||||
require("@tensorflow/tfjs-node");
|
||||
|
||||
const { Canvas, Image, ImageData } = canvas;
|
||||
//@ts-ignore
|
||||
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
|
||||
|
||||
import { Trainer } from "../src/trainer";
|
||||
const main = async () => {
|
||||
dotenv.load({
|
||||
silent: false,
|
||||
errorOnMissing: true,
|
||||
});
|
||||
const inputDir = process.env.REF_IMAGE_DIR as string;
|
||||
const outDir = process.env.TRAINED_MODEL_DIR as string;
|
||||
|
||||
const faceDetectionNet = faceapi.nets.ssdMobilenetv1;
|
||||
await faceDetectionNet.loadFromDisk(path.join(__dirname, "../weights"));
|
||||
await faceapi.nets.faceLandmark68Net.loadFromDisk(
|
||||
path.join(__dirname, "../weights")
|
||||
);
|
||||
await faceapi.nets.faceRecognitionNet.loadFromDisk(
|
||||
path.join(__dirname, "../weights")
|
||||
);
|
||||
|
||||
const options = getFaceDetectorOptions(faceDetectionNet);
|
||||
|
||||
const dirs = fs.readdirSync(inputDir);
|
||||
|
||||
const refs: Array<LabeledFaceDescriptors> = [];
|
||||
for (const dir of dirs) {
|
||||
if (!lstatSync(path.join(inputDir, dir)).isDirectory()) {
|
||||
continue;
|
||||
}
|
||||
const files = fs.readdirSync(path.join(inputDir, dir));
|
||||
let referenceResults = await Promise.all(
|
||||
files.map(async (file: string) => {
|
||||
const mimeType = mime.contentType(
|
||||
path.extname(path.join(inputDir, dir, file))
|
||||
);
|
||||
if (!mimeType || !mimeType.startsWith("image")) {
|
||||
return;
|
||||
}
|
||||
console.log(path.join(inputDir, dir, file));
|
||||
|
||||
try {
|
||||
const referenceImage = (await canvas.loadImage(
|
||||
path.join(inputDir, dir, file)
|
||||
)) as unknown;
|
||||
|
||||
const descriptor = await faceapi
|
||||
.detectSingleFace(referenceImage as TNetInput, options)
|
||||
.withFaceLandmarks()
|
||||
.withFaceDescriptor();
|
||||
if (!descriptor || !descriptor.descriptor) {
|
||||
throw new Error("No face found");
|
||||
}
|
||||
|
||||
const faceDescriptors = [descriptor.descriptor];
|
||||
return new faceapi.LabeledFaceDescriptors(dir, faceDescriptors);
|
||||
} catch (err) {
|
||||
console.log(
|
||||
"An error occurred loading image at path: " +
|
||||
path.join(inputDir, dir, file)
|
||||
);
|
||||
}
|
||||
return undefined;
|
||||
})
|
||||
);
|
||||
|
||||
if (referenceResults) {
|
||||
refs.push(
|
||||
...(referenceResults.filter((e) => e) as LabeledFaceDescriptors[])
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
const faceMatcher = new faceapi.FaceMatcher(refs);
|
||||
|
||||
fs.writeFile(
|
||||
path.join(outDir, "data.json"),
|
||||
JSON.stringify(faceMatcher.toJSON()),
|
||||
"utf8",
|
||||
(err) => {
|
||||
if (err) {
|
||||
console.log(`An error occurred while writing data model to file`);
|
||||
}
|
||||
|
||||
console.log(`Successfully wrote data model to file`);
|
||||
}
|
||||
const trainer = new Trainer(
|
||||
process.env.REF_IMAGE_DIR as string,
|
||||
process.env.TRAINED_MODEL_DIR as string
|
||||
);
|
||||
await trainer.train(true);
|
||||
};
|
||||
|
||||
main();
|
||||
|
@ -6,7 +6,7 @@ import fs from "fs";
|
||||
export const minConfidence = 0.4;
|
||||
|
||||
// TinyFaceDetectorOptions
|
||||
export const inputSize = 408;
|
||||
export const inputSize = 416;
|
||||
export const scoreThreshold = 0.5;
|
||||
|
||||
export const getFaceDetectorOptions = (net: faceapi.NeuralNetwork<any>) => {
|
||||
|
@ -10,17 +10,12 @@ import {
|
||||
import { IConfig, isConfig } from "./config";
|
||||
import * as faceapi from "@vladmandic/face-api";
|
||||
import canvas from "canvas";
|
||||
import fs, { lstatSync } from "fs";
|
||||
import fs from "fs";
|
||||
import * as path from "path";
|
||||
import { nets } from "@vladmandic/face-api";
|
||||
import {
|
||||
LabeledFaceDescriptors,
|
||||
TNetInput,
|
||||
FaceMatcher,
|
||||
} from "@vladmandic/face-api";
|
||||
import * as mime from "mime-types";
|
||||
import { FaceMatcher } from "@vladmandic/face-api";
|
||||
import { Monitor } from "./monitor/monitor";
|
||||
import { getFaceDetectorOptions } from "./common";
|
||||
import { Trainer } from "./trainer";
|
||||
require("@tensorflow/tfjs-node");
|
||||
|
||||
const { Canvas, Image, ImageData } = canvas;
|
||||
@ -82,17 +77,20 @@ export class HomeLocationPlatform implements DynamicPlatformPlugin {
|
||||
* must not be registered again to prevent "duplicate UUID" errors.
|
||||
*/
|
||||
public async discoverDevices() {
|
||||
//Train facial recognition model
|
||||
let faceMatcher: FaceMatcher;
|
||||
if (this.config.trainOnStartup) {
|
||||
faceMatcher = await this.trainModels();
|
||||
} else {
|
||||
const faceDetectionNet = nets.ssdMobilenetv1;
|
||||
|
||||
await faceDetectionNet.loadFromDisk(this.config.weightDirectory);
|
||||
await nets.faceLandmark68Net.loadFromDisk(this.config.weightDirectory);
|
||||
await nets.faceRecognitionNet.loadFromDisk(this.config.weightDirectory);
|
||||
|
||||
//Train facial recognition model
|
||||
let faceMatcher: FaceMatcher;
|
||||
if (this.config.trainOnStartup) {
|
||||
const trainer = new Trainer(
|
||||
this.config.refImageDirectory,
|
||||
this.config.trainedModelDirectory
|
||||
);
|
||||
faceMatcher = await trainer.train(true);
|
||||
} else {
|
||||
const raw = fs.readFileSync(
|
||||
path.join(this.config.trainedModelDirectory, "data.json"),
|
||||
"utf-8"
|
||||
@ -142,88 +140,4 @@ export class HomeLocationPlatform implements DynamicPlatformPlugin {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private async trainModels(): Promise<FaceMatcher> {
|
||||
const faceDetectionNet = faceapi.nets.ssdMobilenetv1;
|
||||
await faceDetectionNet.loadFromDisk(this.config.weightDirectory);
|
||||
await faceapi.nets.faceLandmark68Net.loadFromDisk(
|
||||
this.config.weightDirectory
|
||||
);
|
||||
await faceapi.nets.faceRecognitionNet.loadFromDisk(
|
||||
this.config.weightDirectory
|
||||
);
|
||||
|
||||
const options = getFaceDetectorOptions(faceDetectionNet);
|
||||
|
||||
const dirs = fs.readdirSync(this.config.refImageDirectory);
|
||||
|
||||
const refs: Array<LabeledFaceDescriptors> = [];
|
||||
for (const dir of dirs) {
|
||||
if (
|
||||
!lstatSync(path.join(this.config.refImageDirectory, dir)).isDirectory()
|
||||
) {
|
||||
continue;
|
||||
}
|
||||
const files = fs.readdirSync(
|
||||
path.join(this.config.refImageDirectory, dir)
|
||||
);
|
||||
let referenceResults = await Promise.all(
|
||||
files.map(async (file: string) => {
|
||||
const mimeType = mime.contentType(
|
||||
path.extname(path.join(this.config.refImageDirectory, dir, file))
|
||||
);
|
||||
if (!mimeType || !mimeType.startsWith("image")) {
|
||||
return;
|
||||
}
|
||||
this.log.info(path.join(this.config.refImageDirectory, dir, file));
|
||||
|
||||
try {
|
||||
const referenceImage = (await canvas.loadImage(
|
||||
path.join(this.config.refImageDirectory, dir, file)
|
||||
)) as unknown;
|
||||
|
||||
const descriptor = await faceapi
|
||||
.detectSingleFace(referenceImage as TNetInput, options)
|
||||
.withFaceLandmarks()
|
||||
.withFaceDescriptor();
|
||||
if (!descriptor || !descriptor.descriptor) {
|
||||
throw new Error("No face found");
|
||||
}
|
||||
|
||||
const faceDescriptors = [descriptor.descriptor];
|
||||
return new faceapi.LabeledFaceDescriptors(dir, faceDescriptors);
|
||||
} catch (err) {
|
||||
this.log.info(
|
||||
"An error occurred loading image at path: " +
|
||||
path.join(this.config.refImageDirectory, dir, file)
|
||||
);
|
||||
}
|
||||
return undefined;
|
||||
})
|
||||
);
|
||||
|
||||
if (referenceResults) {
|
||||
refs.push(
|
||||
...(referenceResults.filter((e) => e) as LabeledFaceDescriptors[])
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
const faceMatcher = new faceapi.FaceMatcher(refs);
|
||||
|
||||
fs.writeFile(
|
||||
path.join(this.config.trainedModelDirectory, "data.json"),
|
||||
JSON.stringify(faceMatcher.toJSON()),
|
||||
"utf8",
|
||||
(err) => {
|
||||
if (err) {
|
||||
this.log.info(`An error occurred while writing data model to file`);
|
||||
}
|
||||
|
||||
this.log.info(`Successfully wrote data model to file`);
|
||||
}
|
||||
);
|
||||
|
||||
return faceMatcher;
|
||||
}
|
||||
}
|
||||
|
@ -208,7 +208,9 @@ export class Monitor {
|
||||
|
||||
private onWatchdogTimeout = async (stream: IStream, roomName: string) => {
|
||||
this._logger.info(
|
||||
`[${stream.connectionString}] Watchdog timeout: restarting stream`
|
||||
`[${this.getRedactedConnectionString(
|
||||
stream.connectionString
|
||||
)}] Watchdog timeout: restarting stream`
|
||||
);
|
||||
|
||||
//Close and remove old stream
|
||||
|
103
src/trainer.ts
Normal file
103
src/trainer.ts
Normal file
@ -0,0 +1,103 @@
|
||||
import * as faceapi from "@vladmandic/face-api";
|
||||
import canvas from "canvas";
|
||||
import fs, { lstatSync } from "fs";
|
||||
import * as path from "path";
|
||||
import { LabeledFaceDescriptors, TNetInput } from "@vladmandic/face-api";
|
||||
import * as mime from "mime-types";
|
||||
import { getFaceDetectorOptions } from "./common";
|
||||
require("@tensorflow/tfjs-node");
|
||||
|
||||
const { Canvas, Image, ImageData } = canvas;
|
||||
//@ts-ignore
|
||||
faceapi.env.monkeyPatch({ Canvas, Image, ImageData });
|
||||
|
||||
export class Trainer {
|
||||
constructor(private _refImageDir: string, private _trainedModelDir: string) {}
|
||||
|
||||
public async train(writeToDisk: boolean): Promise<faceapi.FaceMatcher> {
|
||||
const faceDetectionNet = faceapi.nets.ssdMobilenetv1;
|
||||
await faceDetectionNet.loadFromDisk(path.join(__dirname, "../weights"));
|
||||
await faceapi.nets.faceLandmark68Net.loadFromDisk(
|
||||
path.join(__dirname, "../weights")
|
||||
);
|
||||
await faceapi.nets.faceRecognitionNet.loadFromDisk(
|
||||
path.join(__dirname, "../weights")
|
||||
);
|
||||
|
||||
const options = getFaceDetectorOptions(faceDetectionNet);
|
||||
|
||||
const dirs = fs.readdirSync(this._refImageDir);
|
||||
|
||||
const refs = [];
|
||||
for (const dir of dirs) {
|
||||
const descriptor = new LabeledFaceDescriptors(dir, []);
|
||||
await this.getLabeledFaceDescriptorFromDir(
|
||||
path.join(this._refImageDir, dir),
|
||||
descriptor,
|
||||
options
|
||||
);
|
||||
if (descriptor) {
|
||||
refs.push(descriptor);
|
||||
}
|
||||
}
|
||||
|
||||
const faceMatcher = new faceapi.FaceMatcher(refs);
|
||||
|
||||
if (writeToDisk) {
|
||||
fs.writeFile(
|
||||
path.join(this._trainedModelDir, "data.json"),
|
||||
JSON.stringify(faceMatcher.toJSON()),
|
||||
"utf8",
|
||||
(err) => {
|
||||
if (err) {
|
||||
console.log(`An error occurred while writing data model to file`);
|
||||
}
|
||||
|
||||
console.log(`Successfully wrote data model to file`);
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
return faceMatcher;
|
||||
}
|
||||
|
||||
private getLabeledFaceDescriptorFromDir = async (
|
||||
dir: string,
|
||||
labeldFaceDescriptors: LabeledFaceDescriptors,
|
||||
options: faceapi.TinyFaceDetectorOptions | faceapi.SsdMobilenetv1Options
|
||||
): Promise<void> => {
|
||||
if (!lstatSync(dir).isDirectory()) {
|
||||
return;
|
||||
}
|
||||
const files = fs.readdirSync(dir);
|
||||
await Promise.all(
|
||||
files.map(async (file: string) => {
|
||||
const mimeType = mime.contentType(path.extname(path.join(dir, file)));
|
||||
if (!mimeType || !mimeType.startsWith("image")) {
|
||||
return;
|
||||
}
|
||||
console.log(path.join(dir, file));
|
||||
|
||||
try {
|
||||
const referenceImage = (await canvas.loadImage(
|
||||
path.join(dir, file)
|
||||
)) as unknown;
|
||||
|
||||
const descriptor = await faceapi
|
||||
.detectSingleFace(referenceImage as TNetInput, options)
|
||||
.withFaceLandmarks()
|
||||
.withFaceDescriptor();
|
||||
if (!descriptor || !descriptor.descriptor) {
|
||||
throw new Error("No face found");
|
||||
}
|
||||
|
||||
labeldFaceDescriptors.descriptors.push(descriptor.descriptor);
|
||||
} catch (err) {
|
||||
throw new Error(
|
||||
"An error occurred loading image at path: " + path.join(dir, file)
|
||||
);
|
||||
}
|
||||
})
|
||||
);
|
||||
};
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user